If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10r^2+22r+4=0
a = 10; b = 22; c = +4;
Δ = b2-4ac
Δ = 222-4·10·4
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-18}{2*10}=\frac{-40}{20} =-2 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+18}{2*10}=\frac{-4}{20} =-1/5 $
| 13=j+4 | | 4=3u+7(u+2) | | 4=b=20 | | 3(-8+4y)=-72 | | 19x+132=474 | | 10-3(x-6)=4 | | 3y+7.3=-10.7 | | 7/8-2/5k=3/4 | | 1/2x+1/3=11/6 | | 8(3a+5)=4a | | 5(m+7)-8(m-6)=59 | | x19+132=474 | | 17x18=10x8+ | | n/6+7=-9 | | 3d+9=13 | | 2x+15+x+15=90 | | 8=4(x-3)-2x | | -1/2x=-35 | | 1.5+x/2.5=0.8 | | 1.5+x/2.5=0/8 | | 10x^2+22x+4=0 | | 8x+8x=48 | | 2/x=42/5 | | -6(6x-7)=66 | | 4x−6=5 | | 2(8-5b)=3(4b-9)=0 | | (3x-2)(5x-19)=0 | | 5(x+1)+3=-3(-23) | | 2x-7=120 | | 2x+14+5x+14=180 | | 4+n6=16 | | 22+4n=-3(7-4n)-5 |